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Fluctuation Theorem for Heat Flow1

D. J. Searles2, 3 and D. J. Evans4

Thermal conduction in a classical many-body system which is in contact with
two isothermal reservoirs maintained at different temperatures is considered.
The probability that when observed for a finite time, the heat flux of a finite
system flows in the reverse direction to that required by the Second Law of
Thermodynamics is calculated from first principles. Analytical expressions are
given for the probability of observing Second Law violating fluctuations in this
system. These expressions constitute an application of the fluctuation theorem
to the problem of thermal conduction. The expressions are tested using non-
equilibrium molecular dynamics simulations of heat flow between thermostated
walls.

KEY WORDS: fluctuation theorem; heat flow; Second Law of Thermodynamics;
simulation.

1. INTRODUCTION

In a nonequilibrium system, thermodynamic, Xi , or mechanical, Fe fields,
do work on the system which prevent it from relaxing to equilibrium. This
work is proportional to the product of the thermodynamic or mechanical
force, the system volume, V, and the dissipative flux, J. The Second Law
of Thermodynamics implies that for large systems the average work done
by the external forces and fields and the associated total entropy produc-
tion are positive. This is in spite of the fact that the microscopic equations
of motion are reversible. Recently there has been some progress toward
understanding the microscopic origin of this irreversibility. The fluctuation

123

0195-928X�01�0100-0123�19.50�0 � 2001 Plenum Publishing Corporation

1 Paper presented at the Fourteenth Symposium on Thermophysical Properties, June 25�30,
2000, Boulder, Colorado, U.S.A.

2 School of Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia.
3 To whom correspondence should be addressed.
4 Research School of Chemistry, Australian National University, Canberra, ACT 0200,

Australia.



theorem [1�5] (FT) gives a formula for the logarithm of the probability
ratio that in a thermostated nonequilibrium system subject to a dissipative
mechanical field, the time-averaged dissipative flux takes on a value, A,
compared to minus the value, namely, &A. This formula is an analytic
expression for the probability, for a finite system and for a finite time, that
the dissipative flux flows in the reverse direction to that required by the
Second Law of Thermodynamics. This theorem is quite general and has
been shown to apply to classes of both deterministic and stochastic systems.

To date, the fluctuation theorem has been applied almost exclusively
to mechanical rather than thermal nonequilibrium systems (for an excep-
tion, see Ref. 6). These mechanical systems were thermostated using the
deterministic and stochastic thermostats that have been developed for non-
equilibrium molecular dynamics computer simulation over the last two
decades. The use of these model mathematical thermostats has been felt
by some to reduce the relevance of the FT, since these thermostats do not
actually occur in nature; they are mathematical devices developed to
calculate transport coefficients correctly. Recently we have proposed a local
version of the FT and applied it to Poiseuille flow of a fluid between
thermostated walls [5]. In this system the mathematical thermostats
operate only inside walls that are remote from the fluid, so the question
raised by the use of artificial thermostats is thereby removed. The local FT
applies to the fluid system which is not subject to any artificial dynamics
or thermostating. In that paper the dissipative field, gravity, was, however,
still mechanical.

In the present paper we again develop a fluctuation theorem for a
system where the thermostats are remote from the actual system under
consideration, but we go further. We consider the application of the
theorem to a thermal transport process, where it is the boundary condi-
tions which prevent the system from relaxing to equilibrium. The example
we consider is thermal conduction in a cell which is in contact with
thermostated reservoirs which maintain a constant temperature difference
across the thermal conduction cell.

The thought experiment we have in mind is the following. At t<0 we
have three equilibrium systems, H, 0, C, at temperature T0 . At t=0 a
thermostat is applied to the H and C regions to bring them to temperatures
TH and TC , where for simplicity T0=(TH+TC)�2. Again for simplicity
we assume that each of the systems is composed of atoms with the
same interatomic interaction and that the number of atoms in the TH , TC

systems, NH , NC , is equal to NT ,{N0 . At t>0 we expect that the
0-system will be driven away from equilibrium as heat flows from the
hot reservoir H through the 0-system toward the cold reservoir. After
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relaxation of initial transients which last a time, {M , we expect the 0 system
to relax not to equilibrium but to a unique steady state defined by N0 , TH ,
TC and the conduction cell's geometrical dimensions. We do not consider
the situation where for large temperature gradients nonsteady behavior
may occur (e.g., Rayleigh�Bernard).

For this system we derive expressions for the logarithm of the probability
that the total time-averaged entropy production 7� t#(1�t) � t

0 ds 7(s), in the
conduction cell takes on a value, A, compared to minus that value. If the
instantaneous irreversible entropy production is calculated as 7#_V=
� Ji VXi , where V is the system volume, _ is the so-called entropy source
strength, and the sum is over the product of all conjugate thermodynamic
fluxes, Ji , and forces, Xi , then

ln _ p(7� t=A)
p(7� t= &A)&=

At
kB

(1)

We give a generalized expression for the entropy production so that Eq. (1)
is correct for systems where the imposed temperature gradient may be
arbitrarily large. In the weak gradient limit, this expression reduces to the
usual expression from linear irreversible thermodynamics.

From Eq. (1) it is trivial to derive an expression for the probability
that for a finite time, the Second Law of Thermodynamics is violated
7� t<0. If ( } } } ) 7� t>0 denotes an average over all fluctuations in which the
time-integrated entropy production is positive, then

_p(7� t>0)
p(7� t<0)&=(e&7� tt�kB) &1

7� t>0=(e&7� tt�kB) 7� t<0 (2)

and the probability of Second Law violations becomes exponentially small
with increased time of violation, t, and with the number of particles (since
7 is extensive).

2. MICROSCOPIC DESCRIPTION OF THERMAL CONDUCTION

Experimentally there are a number of ways in which the thermal walls
can be thermostated at their initial temperatures. If the walls are made of
high-thermal conductivity material, a coolant may be circulated through
channels in the reservoirs. Alternatively, if the heat capacity of the reser-
voirs is huge compared to that of the thermal conduction cell, then the
temperature variation in the two reservoirs over relevant observation times
may be regarded as insignificant. For theoretical analysis both of these
mechanisms are too complex. Instead, we employ the so-called Nose� �
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Hoover thermostat in the reservoir regions to maintain these regions at a
fixed temperature. Although this thermostat does not exist in nature, its
impact on the system of interest, namely, the thermal conduction cell, is
only indirect. One could argue that the properties of the thermal conduc-
tion cell should be independent of whether the reservoirs are maintained at
a fixed temperature by virtue of the circulation of a coolant, the use of
large heat-capacity reservoirs, or the use of a fictitious thermostat such as
the Nose� �Hoover thermostat.

The aim is to derive fluctuation formulae for the transient response.
We consider the system initially at equilibrium (because then the phase-
space distribution function is known). At this stage the whole system is at
the same temperature (equal to the mean temperature of the steady-state
system). The temperature gradient is then applied, and a heat flux develops.

The equations of motion for all the particles in the combined systems,
H, 0, C are

q* i=pi
(3)

p* i=Fi&:H p iS i&:CpiT i

and

d:H�C

dt
=

1
Q \ :

i # H�C

p2
i

m
&( g+1) kBTH�C+ (4)

where g is the degrees of freedom of the system, Si and Ti are switches
equal to 1 or 0: Si is only nonzero for particles in region H, and Ti is only
nonzero for particles in region C. For simplicity, assume that the walls are
sufficiently dense that the particles from region 0 do not penetrate either of
the reservoir regions. The details of the interatomic forces implicit in the
[Fi ] are described in Section 5. It is important to note that in the 0-region
and the H, 0 and C, 0 interfaces, the equations of motion can be made
arbitrarily realistic by improved modeling of the interatomic forces. In the
0-region there are no unphysical forces.

In the thermal reservoirs where either Si or Ti=1, the thermostating
terms in the equations of motion are unphysical in the sense that the addi-
tional terms do not exist in nature (as discussed above). The additional
so-called Nose� �Hoover thermostat ensures that the reservoir regions are
maintained at constant kinetic temperatures, TH , TC . In the long-time limit

lim
t � �

d:� H�C, t

dt
=0 O TH�C#

1
(3NT+1) kB

:
i # H�C

p2
it

m
(5)
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where we use the notation B� t=(1�t) � t
0 ds B(s) for the time-average of any

phase variable, B. The extensive constant Q controls the time scale for
fluctuations in the kinetic temperatures, TH , TC .

3. TRANSIENT FLUCTUATION THEOREM FOR
HEAT CONDUCTION

We assume that the composite system is at equilibrium at t=0 and
that the initial phase space distribution, f (1, t), is canonical:

f (1, 0)=
exp[&;0[H0(1)+Q(:2

H+:2
C)�2]]

� d1 d:H d:C exp[&;0[H0(1)+Q(:2
H+:2

C)�2]]
(6)

where ;0=1�kT0 and H0=� p2
i �2m+8(q) is the internal energy. We note

that in an ergodic equilibrium system, Nose� �Hoover dynamics is expected
to generate phases, 1, which are distributed canonically.

The phase-space compression factor, 4(1), defined from the Liouville
equation,

df (1, t)
dt

#& f (1, t) 4(1) (7)

is

4#
�

�1
} 14 +

�
�:H

} :* H+
�

�:C

} :* C= &dNH :H&dNC :C (8)

where d is the Cartesian dimension. Thus,

f (1(t), t)= f (1(0), 0) exp _&|
t

0
ds 4(s)&

= f (1(0), 0) exp _|
t

0
ds dNH:H(s)+dNC:C(s)& (9)

From the equations of motion we see that the rate of change of the internal
energy is

H4 0=: pi } p* i �m&Fi } q* i=&2KH :H&2KC:C (10)

where Ka is the instantaneous kinetic energy of region a.
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Fig. 1. Schematic diagram showing the phase space
contraction as a function of time for a nonequilibrium
system.

The probability ratio of observing trajectories and antitrajectories
originating from phase regions $1(0), $1*(0), respectively, is given by the
probability density at the initial phase points multiplied by the initial phase
volume. The phase volume at the initial point of the antitrajectory is equal
to that about the final point of the original trajectory (see Fig. 1). The ratio
of these phase volumes at the beginning and end is just the phase-space
contraction.

In general,

Pr($1(0))
Pr($1*(0))

=
f (1(0), 0)

f (1*(0), 0)
$V(1(0), 0)

$V(1*(0), 0)

=
f (1(0), 0)
f (1(t), 0)

$V(1(0), 0)
$V(1(t), t)

=
f (1(0), 0)
f (1(t), 0)

e&4� t t (11)

Now consider f (1(0), 0)�f (1(t), 0) for this system. For an NH extended
canonical distribution,
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f (1(0), 0)
f (1(t), 0)

=
exp[&;0[H0(1(0))+ 1

2Q(:H(0)2+:C(0)2)]]
exp[&;0[H0(1(t))+ 1

2Q(:H(t)2+:C(t)2)]]

=exp _;0 |
t

0
ds[H4 0(s)+Q(:H(s) :* H(s)+:C(s) :* C(s))]&

=exp[;0(&dNH :� H, tt�;H&2NC :� C, tt�;C)+O(1)] (12)

The O(1) corrections will be dependent on any constraints imposed on the
wall particles (see Section 5).

Combining Eqs. (11) and (12) gives

Pr($1(0))
Pr($1*(0))

=exp _dNT \TC&TH

TC+TH+ |
t

0
ds[:H(s)&:C(s)]& (13)

Clearly, the probability ratio of observing conjugate values for the time-
averaged difference in the thermostat multipliers is

Pr(:� C, t&:� H, t=A)
Pr(:� C, t&:� H, t=&A)

=exp _dNT

TH&TC

TC+TH

At& (14)

In deriving Eq. (14), it is not necessary to assume that all transient trajec-
tory segments that have the specified value of :� C, t&:� H, t originate in the
same small contiguous subregion of phase space, $1(0) or $1*(0), and,
hence, Eq. (14) is valid even when there are multiple islands of phase space
which generate the specified conjugate values of :� C, t&:� H, t .

Equation (14) is a statement of the transient fluctuation theorem for
heat flow between Nose� �Hoover thermostated walls. If the steady state
exists and is unique, then a steady-state fluctuation theorem is valid
asymptotically [9].

lim
t � �

ln _ Pr(:� C, t&:� H, t=A)
Pr(:� C, t&:� H, t=&A)&<_dNT

TH&TC

TC+TH

At&=1 (15)

These two equations are valid outside the linear regime. The only caveat is
that the steady-state formula requires the existence of a unique steady state,
regardless of the initial t=0 equilibrium phase, 1(0). Equations (14) and
(15) are clearly consistent with the Second Law of Thermodynamics in that
it is exponentially more probable for heat to flow from hot to cold, in
which case, :� C, t>0, :� H, t<0.
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4. NONLINEAR RESPONSE THEORY FOR HEAT CONDUCTION

In order to understand this system better, we will calculate the time-
dependent response of an arbitrary phase function, B(1). Following
Yamada and Kawasaki [7, 8], the distribution function for the system
considered in this work, at time t after the application of a temperature
gradient, is given by

f (1, t)=exp _&|
t

0
ds 4(&s)& exp[&;(H(&t)+ 1

2 Q(:2
H(&t)+:2

C(&t)))]

= f (1, 0) exp {&; |
&t

0
ds[H4 (s)+Q(:H(s) :* H(s)+:C(s) :* C(s)))]=

_exp |
&t

0
ds 4(s)

= f (1, 0) exp {&
dNT(TH&TC)

TH+TC
|

&t

0
ds[:H(s)&:C(s)]= (16)

From this distribution function, the transient time correlation function
(TTCF) expression for the ensemble average of a phase variable, B, is
given by

(B(t)) =(B(0)) &
dNT(TH&TC)

TH+TC
|

t

0
ds(B(s)[:H(0)&:C(0)]) (17)

By comparing with the Kawasaki distribution function for a system driven
by an external mechanical force (e.g., see Eq. (7.25) of Ref. 8), we see that
although the system is a thermal nonequilibrium system where boundary
conditions rather than external mechanical forces drive the system away
from equilibrium, there is a formal resemblance of the nonlinear response
to that obtained if we applied a mechanical field,

Fe=
kB(TH&TC)

2
(18)

to the system. In this case the intensive dissipative flux J can be identified
as

J(1)=dnT[:H(1)&:C(1)] (19)
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Thus, the transient fluctuation theorem of Eq. (14) then takes on the
standard form,

Pr(J� t=A)
Pr(J� t=&A)

=exp[&;AVFe t] (20)

Further, the integrated form of the fluctuation formula can be written as

p(J� t<0)=
(eJ� t;VFe t) J� t>0

1+(eJ� t;VFe t) J� t>0

(21)

Equation (20) shows that if A is negative, then as the system size or time
interval grows, the probability of observing this negative flux relative to
that of observing the corresponding positive flux increases exponentially.
In the limit of infinite t or infinite system, where any fluctuations in the
phase variables disappear, Eqs. (20) and (21) predict a negative value of
the dissipative flux. Since in this limit, H4 0=0 and hence 2KH:H+2KC :C=0
[see Eq. (10)], it is straightforward to show that in this limit, ;JVFe=
&dNT(:H+:C), which is equal to the phase-space contraction and propor-
tional to the total spontaneous entropy production [I_=kB(dN:H+
dN:C)]. In these limits, the heat flux per unit area at the top and bottom
walls must be equal and if region C is above region H using JqA=dQ�dt,
we obtain JqA=dNT(:H+:C)[kBTH TC �(TH&TC)]. The heat flux is
therefore positive in these limits and with this geometry and will flow from
the hot to the cold wall. Therefore, the fluctuation theorem given in the
forms of Eqs. (14), (20), and (21) predicts that in the limit of infinite time
interval or the thermodynamic limit, the spontaneous entropy production
must be positive, the phase space must contract, and heat must flow from
the hot to the cold wall.

The ultimate explanation for the irreversibility inherent in these equa-
tions is the assumption of causality in calculating the probabilities. We
calculated the probability of observing fluctuations from the probabilities
of observation of the initial equilibrium phases from which these fluctuations
were generated. Had we made the corresponding anticausal assumption, then
an anti-Second Law would have been derived.

5. SIMULATIONS

In order to test the fluctuation formula given by Eq. (14), simulations
of a two-dimensional fluid between walls were carried out. The system
consisted of three sections: a fluid region of 64 particles between two walls
each containing 32 particles. The complete system was initially in a square

131Fluctuation Theorem for Heat Flow



File: 840J 367510 . By:XX . Date:07:03:01 . Time:12:46 LOP8M. V8.B. Page 01:01
Codes: 2363 Signs: 1901 . Length: 44 pic 2 pts, 186 mm

box with periodic boundary conditions in the direction parallel to the
walls. The equations of motion for all the particles are given by Eqs. (3)
and (4).

For the particles in the fluid region (labeled the 0 region), the switches
Si and Ti were set to zero at all times, and therefore, these particles obeyed
Newtonian mechanics. The forces on these particles were due solely to their
interactions with other particles via the WCA pair potential [10]. The
particle density of the fluid region was initially set to n=0.4. All units are
reduced Lennard�Jones units.

The wall particles were thermostated using the Nose� �Hoover thermo-
stat, and forces were applied so that their density was maintained at a
higher value of n=1.2. One wall was designated the hot wall, H, and the
other the cold wall, C. In the hot wall, the switches were set to Si=1 and
Ti=0, whereas in the cold wall they were set to Si =0 and Ti=1. These
particles interacted with other particles via a WCA pair potential. In addi-
tion, a spring potential was applied to prevent the walls from diffusing
[U(rij)= 1

2k(rij&req)2] and each layer of particles in the wall was subject
to a layer force, using the method of Todd et al. [11]. These forces are
nonphysical and designed to ensure that the wall remained intact throughout
the simulation. During an equilibration period, the temperature in the
Nose� �Hoover thermostat was set to T=1.0 for both the hot and the cold
walls. After this period, the Nose� �Hoover thermostat was set to TH=1.1
and TC=0.9 to create a temperature gradient across the cell.

Fig. 2. Histogram of the values of J� t obtained from simula-
tions of a fluid between two walls to which a temperature
gradient is applied at time 0. The density of the fluid is
n=0.4, and the walls are thermostated at TH=1.1 and
TC=0.9. The fluid consists of 64 particles, and each wall
consists of 32 particles.
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Fig. 3. Plot of &1�(VFe ;0 t) ln( p(J� t=A)�p(J� t= &A)) versus A
carried out in order to test Eq. (20) for a system consisting of a
fluid between two walls to which a temperature gradient is applied
at time 0. The behavior predicted by Eq. (20) is shown by the line.
The density of the fluid is n=0.4, and the walls are thermostated
at TH=1.1 and TC=0.9. The fluid consists of 64 particles, and
each wall consists of 32 particles.

In order to test the fluctuation formula, approximately 8_107 trajec-
tories were simulated. For each trajectory, this involved sampling a starting
point from the equilibrium distribution, applying the temperature gradient,
and measuring the value of J� t for a trajectory of length t=1.6. The 8_107

values of J� t obtained were then used to construct a frequency histogram
(see Fig. 2) from which the probabilities required for testing Eq. (20) could
be obtained. The histogram for this simulation is shown in Fig. 2. Equation
(20) was tested by plotting &1�(VFe;0 t) ln( p(J� t=A)�p(J� t=&A)) versus A,
as shown in Fig. 3. According to the fluctuation theorem for this system
[see Eq. (20)], the slope of this plot should be 1. Clearly the numerical
data are consistent with the theoretical prediction.

6. CONCLUSION

We have derived a fluctuation expression for a system to which a tem-
perature gradient is applied. The expression is consistent with the Second
Law of Thermodynamics and predicts that the heat flow will occur from a
hot region to a cold region. The expression was tested using numerical
simulation of a two-dimensional fluid containing particles undergoing
Newtonian dynamics and interacting via a WCA pair potential.
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